A Study on the Model of Detecting the Liquid Level of Sealed Containers Based on Kirchhoff Approximation Theory
نویسندگان
چکیده
By simulating the sound field of a round piston transducer with the Kirchhoff integral theorem and analyzing the shape of ultrasound beams and propagation characteristics in a metal container wall, this study presents a model for calculating the echo sound pressure by using the Kirchhoff paraxial approximation theory, based on which and according to different ultrasonic impedance between gas and liquid media, a method for detecting the liquid level from outside of sealed containers is proposed. Then, the proposed method is evaluated through two groups of experiments. In the first group, three kinds of liquid media with different ultrasonic impedance are used as detected objects; the echo sound pressure is calculated by using the proposed model under conditions of four sets of different wall thicknesses. The changing characteristics of the echo sound pressure in the entire detection process are analyzed, and the effects of different ultrasonic impedance of liquids on the echo sound pressure are compared. In the second group, taking water as an example, two transducers with different radii are selected to measure the liquid level under four sets of wall thickness. Combining with sound field characteristics, the influence of different size transducers on the pressure calculation and detection resolution are discussed and analyzed. Finally, the experimental results indicate that measurement uncertainly is better than ±5 mm, which meets the industrial inspection requirements.
منابع مشابه
Thermoelastic Damping and Frequency Shift in Kirchhoff Plate Resonators Based on Modified Couple Stress Theory With Dual-Phase-Lag Model
The present investigation deals with study of thermoelastic damping and frequency shift of Kirchhoff plate resonators by using generalized thermoelasticity theory of dual-phase-lag model. The basic equations of motion and heat conduction equation are written with the help of Kirchhoff-Love plate theory and dual phase lag model. The analytical expressions for thermoelastic damping and frequency ...
متن کاملDevelopment of a rheological model for polymeric fluids based on FENE model
Rheological models for polymer solutions and melts based on the finitely extensible non-linear elastic (FENE) dumbbell theory are reviewed in this study. The FENE-P model that is a well-known Peterlin approximation of the FENE model, indicates noticeable deviation from original FENE predictions and also experimental results, especially in the transient flow. In addition, both FENE and FENE-P mo...
متن کاملTheoretical Study of Polyethylene Crystallization Using Modified Weighted Density Approximation (MWDA)
In this article, the crystallization of polyethylene is investigated by the modified weighted density approximation. Also, a direct correlation function of polyethylene based on the RISM theory is used. The free energy of a polyethylene is calculated using the density functional theory. The crystallization and also the solid and liquid densities of polyethylene are calculated and compared...
متن کاملStudy of Volumetric Flow Rate of a Micropump Using a Non-classical Elasticity Theory
The purpose of this research is to study the mechanical behavior of a micropump with clamped circular diaphragm which is the main component of drug delivery systems. In this paper, the non-linear governing equations of the circular microplate using Kirchhoff thin plate theory was been extracted based on the modified couple stress (MCST) and classical (CT) theories. Then, the non-linear equation...
متن کاملSemi-Analytical Solution for Vibration of Nonlocal Piezoelectric Kirchhoff Plates Resting on Viscoelastic Foundation
Semi-analytical solutions for vibration analysis of nonlocal piezoelectric Kirchhoff plates resting on viscoelastic foundation with arbitrary boundary conditions are derived by developing Galerkin strip distributed transfer function method. Based on the nonlocal elasticity theory for piezoelectric materials and Hamilton's principle, the governing equations of motion and boundary conditions are ...
متن کامل